Search results for "Potential theory"

showing 10 items of 24 documents

Failure of topological rigidity results for the measure contraction property

2014

We give two examples of metric measure spaces satisfying the measure contraction property MCP(K,N) but having different topological dimensions at different regions of the space. The first one satisfies MCP(0,3) and contains a subset isometric to $\mathbb{R}$, but does not topologically split. The second space satisfies MCP(2,3) and has diameter $\pi$, which is the maximal possible diameter for a space satisfying MCP(N-1,N), but is not a topological spherical suspension. The latter example gives an answer to a question by Ohta.

Mathematics - Differential Geometrymetric measure spacesGeodesicPhysics::Instrumentation and DetectorsQuantitative Biology::Tissues and Organsmeasure contraction propertyMetric Geometry (math.MG)53C23 (Primary) 28A33 49Q20 (Secondary)Ricci curvature lower boundsTopologyPotential theorymaximal diameter theoremnonbranchingRigidity (electromagnetism)Mathematics - Metric GeometryDifferential Geometry (math.DG)splitting theoremFOS: MathematicsSplitting theoremContraction (operator theory)AnalysisMathematicsgeodesics
researchProduct

Superharmonic functions are locally renormalized solutions

2011

Abstract We show that different notions of solutions to measure data problems involving p-Laplace type operators and nonnegative source measures are locally essentially equivalent. As an application we characterize singular solutions of multidimensional Riccati type partial differential equations.

Partial differential equationSubharmonic functionApplied Mathematicsta111Mathematical analysisType (model theory)Measure (mathematics)Parabolic partial differential equationPotential theoryMathematical PhysicsAnalysisMathematicsAnnales de l'Institut Henri Poincare (C) Non Linear Analysis
researchProduct

Equivalence of viscosity and weak solutions for the $p(x)$-Laplacian

2010

We consider different notions of solutions to the $p(x)$-Laplace equation $-\div(\abs{Du(x)}^{p(x)-2}Du(x))=0$ with $ 1<p(x)<\infty$. We show by proving a comparison principle that viscosity supersolutions and $p(x)$-superharmonic functions of nonlinear potential theory coincide. This implies that weak and viscosity solutions are the same class of functions, and that viscosity solutions to Dirichlet problems are unique. As an application, we prove a Rad\'o type removability theorem.

Pure mathematicsPrimary 35J92 Secondary 35D40 31C45 35B60Applied MathematicsMathematics::Analysis of PDEsDirichlet distributionPotential theoryNonlinear systemsymbols.namesakeMathematics - Analysis of PDEsFOS: MathematicssymbolsLaplace operatorEquivalence (measure theory)Mathematical PhysicsAnalysisAnalysis of PDEs (math.AP)MathematicsAnnales de l'Institut Henri Poincaré C, Analyse non linéaire
researchProduct

Quasi-Continuous Vector Fields on RCD Spaces

2021

In the existing language for tensor calculus on RCD spaces, tensor fields are only defined $\mathfrak {m}$ -a.e.. In this paper we introduce the concept of tensor field defined ‘2-capacity-a.e.’ and discuss in which sense Sobolev vector fields have a 2-capacity-a.e. uniquely defined quasi-continuous representative.

Quasi-continuityPure mathematics01 natural sciencesPotential theoryTensor fielddifferentiaaligeometria010104 statistics & probabilityRCD spacesSettore MAT/05 - Analisi MatematicaFOS: Mathematics0101 mathematicsMathematicsFunctional analysisDifferential calculus; Quasi-continuity; RCD spaces010102 general mathematicsRCD spaceFunctional Analysis (math.FA)Mathematics - Functional AnalysisSobolev spaceDifferential calculusdifferential calculusVector fieldTensor calculusfunktionaalianalyysiquasi-continuityAnalysis
researchProduct

H�lder continuity of solutions to quasilinear elliptic equations involving measures

1994

We show that the solutionu of the equation $$ - div(|\nabla u|^{p - 2} \nabla u) = \mu $$ is locally β-Holder continuous provided that the measure μ satisfies the condition μ(B(x,r))⩽Mrn − p + α(p − 1) for some α>β. A corresponding result for more general operators is also proven.

Functional analysisMathematical analysisHölder conditionNabla symbolMeasure (mathematics)AnalysisPotential theoryMathematicsPotential Analysis
researchProduct

The Obstacle Problem in a Non-Linear Potential Theory

1988

M. Brelot gave rise to the concept harmonic space when he extended classical potential theory on ℝn to an axiomatic system on a locally compact space. I have recently constructed1 a non-linear harmonic space by dropping the assumption that the sum of two harmonic functions is harmonic and considering some other axioms instead. This approach has its origin in the work of O. Martio, P. Lindqvist and S. Granlund2,3,4, who have developed a non-linear potential theory on ℝn connected with variational integrals of the type ∫ F(x,∇u(x)) dm(x), where F(x, h) ≈ |h|p.

Harmonic functionObstacle problemMathematical analysisAxiomatic systemHarmonic (mathematics)Locally compact spaceType (model theory)Potential theoryAxiomMathematics
researchProduct

Polar Sets in a Nonlinear Potential Theory

1988

In this lecture we discuss nonlinear potential theory based on “A-super-harmonic functions”; the theory can be viewed as a (nonlinear) extension of the classical study of superharmonic functions in ℝn.

PhysicsNonlinear systemSubharmonic functionClassical mechanicsMathematics::Analysis of PDEsPolarExtension (predicate logic)Computer Science::DatabasesPotential theory
researchProduct

Spontaneous periodic and bursting current oscillations in iron corrosion by dichromate: a useful study for simulating biological systems

1995

Abstract Studies on chemical and electrochemical oscillating systems are very useful in understanding more complex biological systems. Spontaneous periodic and bursting current oscillations were found in iron/dichromate systems coupled with graphite or zinc electrodes. In this paper, we study some phenomenological features of the two systems: their typical oscillation profiles and the influence of external resistance. The results are explained by the Franck-Fitzhugh model using the mixed potential theory.

ChemistryMixed potential theoryOscillationInorganic chemistryBiophysicsElectrochemistryCorrosionBurstingChemical physicsElectrodeElectrochemistryGraphitePhysical and Theoretical ChemistryCurrent (fluid)Bioelectrochemistry and Bioenergetics
researchProduct

Singular Neumann (p, q)-equations

2019

We consider a nonlinear parametric Neumann problem driven by the sum of a p-Laplacian and of a q-Laplacian and exhibiting in the reaction the competing effects of a singular term and of a resonant term. Using variational methods together with suitable truncation and comparison techniques, we show that for small values of the parameter the problem has at least two positive smooth solutions.

TruncationGeneral MathematicsResonant nonlinearity0211 other engineering and technologies02 engineering and technology01 natural sciencesPotential theoryTruncation and comparisonTheoretical Computer ScienceSettore MAT/05 - Analisi MatematicaNeumann boundary conditionApplied mathematics0101 mathematics(p q)-equationNonlinear regularityMathematicsParametric statistics021103 operations research010102 general mathematicsSingular termSingular termMathematics::Spectral TheoryOperator theoryTerm (time)Nonlinear systemNonlinear strong maximum principleAnalysisPositivity
researchProduct

A note on an overdetermined problem for the capacitary potential

2016

We consider an overdetermined problem arising in potential theory for the capacitary potential and we prove a radial symmetry result.

Overdetermined boundary value problemCapacityElectrostatic potential010102 general mathematicsMathematical analysisSymmetry in biology·SymmetryComputer Science::Numerical Analysis01 natural sciencesSymmetry (physics)Potential theory010101 applied mathematicsOverdetermined systemMathematics (all)0101 mathematicsMathematics
researchProduct